

Relationship between work rate and oxygen uptake in mitochondrial myopathy during ramp-incremental exercise

Relationship between work rate and oxygen uptake in mitochondrial myopathy during ramp-incremental exercise

A.C. Gimenes¹, J.A. Neder¹, S. Dal Corso¹, C.R. Nogueira¹, L. Nápolis¹, M.T. Mello³, A.S. Bulle² and L.E. Nery¹

¹Setor de Fisiologia Clínica do Exercício, Disciplina de Pneumologia, Departamento de Medicina, ²Setor de Doenças Neuromusculares, ³Departamento de Psicobiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brasil

Abstract

We determined the response characteristics and functional correlates of the dynamic relationship between the rate (Δ) of oxygen consumption (VO₂) and the applied power output (work rate = WR) during ramp-incremental exercise in patients with mitochondrial myopathy (MM). Fourteen patients (7 males, age 35.4 ± 10.8 years) with biopsy-proven MM and 10 sedentary controls (6 males, age 29.0 ± 7.8 years) took a ramp-incremental cycle ergometer test for the determination of the VO₂-on-exercise mean response time (MRT) and the gas exchange threshold (GET). The ΔVO₂/ΔWR slope was calculated up to GET (S₁), above GET (S₂) and over the entire linear portion of the response (S₁T). Knee muscle endurance was measured by isokinetic dynamometry. As expected, peak VO₂ and muscle performance were lower in patients than controls (P < 0.05). Patients had significantly lower ΔVO₂/ΔWR than controls, especially the S₂ component (6.8 ± 1.5 vs 10.3 ± 0.6 mL·min⁻¹·W⁻¹, respectively; P < 0.001). There were significant relationships between ΔVO₂/ΔWR (S₁T) and muscle endurance, MRT-VO₂, GET and peak VO₂ in MM patients (P < 0.05). In fact, all patients with ΔVO₂/ΔWR below 8 mL·min⁻¹·W⁻¹ had severely reduced peak VO₂ values (<60% predicted). Moreover, patients with higher cardiopulmonary stresses during exercise (e.g., higher Δ ventilation/carbon dioxide output and Δ heart rate/Δ VO₂) had lower ΔVO₂/ΔWR (P < 0.05). In conclusion, a readily available, effort-independent index of aerobic dysfunction during dynamic exercise (ΔVO₂/ΔWR) is typically reduced in patients with MM, being related to increased functional impairment and higher cardiopulmonary stress.

Key words: Muscular diseases; Oxygen consumption; Cardiopulmonary exercise testing; Skeletal muscle; Pathophysiology; Mitochondrial myopathy

Introduction

The rate (Δ) of change in oxygen consumption (VO₂) relative to power output (work rate, WR) during ramp-incremental exercise depends on the ability of the cardio-circulatory system to deliver, and the muscle capacity to extract, O₂ from arterial (capillary) blood (1,2). The ΔVO₂/ΔWR relationship is influenced by the gas exchange threshold (GET) with most investigators describing a bi-linear response, i.e., a sub-GET S₁ slope flatter than a supra-GET S₂ slope (3-5). The analysis of the total ΔVO₂/ΔWR slope (S₁T) and its components can provide useful information about the adequacy of the aerobic responses to exercise in health and disease. Several studies, for instance, have shown that a flatter-than-normal ΔVO₂/ΔWR is a sensitive marker of abnormal O₂ delivery and utilization in a number of systemic pathological conditions ranging from congestive heart failure to systemic lupus erythematosus (6-11).

Mitochondrial diseases are caused by very diverse genetic alterations located either on nuclear DNA or on mitochondrial DNA (mtDNA) (12). Mitochondrial myopathy (MM) is the collective term for disease conditions in which the diminished rate of cellular O₂ utilization may place a burden on several systems in order to enhance O₂ uptake and delivery (13-15). In fact, patients with MM commonly present hyperventilatory and hypercirculatory patterns of response to dynamic exercise (16-20). These abnormalities are likely to be related to the fundamental pathophysiological abnormality in MM, i.e., impaired O₂ extraction. In this context, although there is a sound physiological rationale
for the notion that $\Delta VO_2/\Delta WR$ would be severely reduced in MM, and probably related to exercise impairment and to systemic cardiopulmonary stress, no previous study has investigated the characteristics and functional correlates of $\Delta VO_2/\Delta WR$ (S_1, S_2, S_7) in this patient population.

The objective of this study, therefore, was to compare the dynamic behavior of $\Delta VO_2/\Delta WR$ during ramp-incremental exercise of patients with MM and that of healthy sedentary controls. We hypothesized that patients would present impaired O$_2$ utilization (reduced $\Delta VO_2/\Delta WR$), which would be significantly related to maximum exercise capacity and selected indexes of functional impairment. In addition, we anticipated that the ventilatory and cardiovascular responses to the prevailing metabolic demand (21-23) would be inversely related to $\Delta VO_2/\Delta WR$, suggesting that the hyperkinetic cardiopulmonary response would be mechanistically linked to impaired muscle bioenergetics in MM.

Material and Methods

Study population

Fourteen non-smoking patients (7 males aged 20 to 52 years) with biopsy-proven MM (see below) who had been followed at the Institutional Neuromuscular Division agreed to participate in the study. All consecutive patients with the following characteristics were selected: clinical evidence of MM in the form of chronic progressive external ophthalmoplegia (13,17): ptosis, exercise intolerance, and chronic fatigue. This phenotype is associated with autosomal dominant DNA polymerase-gamma and adenine nucleotide translocase mutations with consequent deletions in mtDNA (15). There was no clinical or echocardiographic evidence of cardiomyopathy or impaired cardiac conduction in any patient. Subjects with mitochondrial encephalomyopathy, lactic acidosis and strokes, myoclonus epilepsy with ragged-red fibers, and other MMs were excluded from the study. In addition, to avoid the confounding effect of physical conditioning on muscle metabolism in MM (24), we selected patients who had not engaged in any regular physical activity in the preceding year.

Ten age- and gender-matched healthy volunteers (6 males aged 20 to 46 years) comprised the control group. We selected patients who had not engaged in any regular physical conditioning on muscle metabolism in MM (24), of cardiomyopathy or impaired cardiac conduction in any patient. The biopsies were taken at least 3 months before the exercise test. Histopathological evaluation revealed a ragged-red fiber pattern in all specimens; abnormally low mitochondrial electron transport chain activity (cytochrome c oxidase) was demonstrated histochemically by the method of Seligman et al. (26). Two experienced neuropathologists independently reviewed the muscle biopsies.

Peripheral muscle strength. Isokinetic muscle endurance of the dominant knee extensor (quadriceps) was measured with a computer-based dynamometer (Contrex CE, Switzerland). During the tests, subjects were seated upright on the chair of the dynamometer with their back fully supported. The mechanical axis of rotation of the lever arm was aligned to the axis of rotation of the knee. After a 3-min rest, muscle endurance was determined as the total work achieved during 20 consecutive maximal repetitions at 300°/s.

Cardiopulmonary exercise testing. The exercise tests were carried out on an electromagnetically braked cycle ergometer (CPE 2000, Medical Graphics Corporation - MGC, USA) with gas exchange and ventilatory variables being analyzed breath-by-breath (CardiO2 System, MGC). The power (W) was continuously increased in a linear “ramp” pattern (27) (5-15 W/min in patients and 15-25 W/min in healthy subjects) so that the incremental exercise test duration was more than 8 min and less than 12 min in all participants, based on a “symptom-limited interruption”. The following variables are reported as means of 15 s: oxygen uptake (VO$_2$, L/min at standard temperature and pressure dry, STPD), carbon dioxide output (VCO$_2$, L/min STPD), minute ventilation (VE, L/min BTPS), and end-tidal partial pressure for O$_2$ and CO$_2$ (PETO$_2$ and PETCO$_2$, mmHg). Heart rate (HR, bpm) was automatically calculated from the R-R distance of a 12-lead ECG tracing (CardiO2 System, MGC). Capillary samples were collected from the ear lobe for blood lactate measurements (mEq/L) at exercise cessation (Yellow Springs 2.700 STAT plus, Yellow Springs Instruments, USA). The samples were lysed before the measurements and values are reported as absolute values and related to peak WR (lactate/WR ratio). The VO$_2$ at the estimated lactate threshold was evaluated by the gas exchange method (GET), with visual inspection of the inflection point of VCO$_2$ with regard to VO$_2$ (modified V-slope) and by the ventilatory method when VE/VO$_2$ and PETO$_2$ increased while VE/VCO$_2$ and PETCO$_2$ remained stable (28,29). The average VO$_2$ for the last 15 s was considered to be representative of the subject’s peak VO$_2$ (29).
In order to measure the kinetics of the initial VO₂ adjustment during the incremental exercise, the mean response time (MRT) was determined as the time from the onset of the ramp forcing function to the point of intersection between the baseline VO₂ and a linear backward extrapolation of the VO₂ vs time slope (Figure 1) (30,31). This was performed in two ways, using either the region of VO₂ response below the GET, S₁ (MRT₁) or the total slope S₇ (MRT₇) (27). The baseline was defined as the average value for VO₂ during the last 2 min of unloaded cycling prior to onset of the ramp.

Submaximal exercise relationships. As mentioned, the ΔVO₂/ΔWR relationship (mL·min⁻¹·W⁻¹) was calculated to obtain an index of the overall gain of the VO₂ response, i.e., in disease states, reduced values would indicate a greater reliance on anaerobic sources of ATP regeneration (1,2). Considering that the GET could distort the linearity of the response (due to an even greater reliance on anaerobic metabolism) (3,5), the ΔVO₂/ΔWR slope was determined using linear regression analysis over three segments: S₁, from the start of VO₂ increase during exercise to the GET; S₂, from the GET to either peak VO₂ or where VO₂ began to level off; and S₇, over the range of S₁ + S₂.

Determination of the ΔHR/ΔVO₂ relationship (beat·L⁻¹·min⁻¹). Although VO₂ is an appropriate dependent variable, this relationship has been traditionally described with HR on the y-axis (22,23). In this context, a steeper HR response to a given metabolic demand would imply reduced stroke volume and/or low peripheral oxygen extraction (i.e., an inappropriate cardiovascular response to incremental exercise). Linearity of the HR response throughout the test duration was first investigated for each subject. In the event of late departures from linearity, we then applied regression analysis only to the initial linear phase response.

Determination of the sub-respiratory compensation point (RCP) ΔVE/ΔVO₂ relationship. For the determination of this index of ventilatory "efficiency" (21-23), linear regression analysis was applied only to the individually selected data points below the RCP (i.e., before the development of the characteristic hyperventilatory response to the ongoing lactacidemia).

Statistical analysis
Means and standard deviations (SD) of normally distributed data (Kolmogorov-Smirnov test) were obtained for patients and controls and were compared using an unpaired t-test. Alternatively, the Mann-Whitney test was used to assess between-group differences of variables with a non-Gaussian distribution. Pearson’s product-moment correlation was used to assess the degree of association between continuous variables. The probability of a type I error was set at 5% for all tests (P < 0.05).

Results
Patient characteristics
Patients with MM presented decreased total body and fat-free mass indexes compared to normal subjects (P < 0.05). Appendicular muscle mass, estimated by arm muscle circumference, was reduced in patients (Table 1). Muscle endurance capacity (total work) was also significantly lower in patients than controls (863.4 ± 274.2 vs 1577.5 ± 450.0 kJ, respectively; P < 0.01). Peripheral muscle performance was related to fat-free mass index in MM patients (R = 0.74; P < 0.001).

Table 1. Demographic/anthropometric characteristics of patients with mitochondrial myopathy and healthy controls.

<table>
<thead>
<tr>
<th></th>
<th>Mitochondrial myopathy (N = 14)</th>
<th>Controls (N = 10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender (male/female)</td>
<td>7/7</td>
<td>6/4</td>
</tr>
<tr>
<td>Age (years)</td>
<td>35.4 ± 10.8</td>
<td>29.0 ± 7.8</td>
</tr>
<tr>
<td>Height (m)</td>
<td>1.61 ± 0.83*</td>
<td>1.70 ± 0.64</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>52.9 ± 13.5*</td>
<td>71.4 ± 9.8</td>
</tr>
<tr>
<td>Body composition</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>19.9 ± 3.9*</td>
<td>24.6 ± 2.9</td>
</tr>
<tr>
<td>FFM (kg)</td>
<td>40.3 ± 8.7*</td>
<td>52.5 ± 7.1</td>
</tr>
<tr>
<td>FFM index (kg/m²)</td>
<td>15.3 ± 2.3*</td>
<td>18.0 ± 2.0</td>
</tr>
<tr>
<td>AMC (cm)</td>
<td>20.5 ± 2.6*</td>
<td>24.9 ± 4.7</td>
</tr>
</tbody>
</table>

Data are reported as means ± SD. BMI = body mass index; FFM = fat free mass; AMC = arm muscle circumference. *P < 0.05 (unpaired t-test).
duration of the ramp forcing protocol (8.6 ± 1.1 vs 8.9 ± 1.9 min for patients and controls, respectively; P > 0.05). Peak VO2 and power (WR) were significantly lower in patients than controls (Table 2). The GET was noninvasively identified in all subjects and was lower in patients than controls when analyzed as mL/min and as % of predicted; however, since patients had lower weight, GET in mL min⁻¹ kg⁻¹ was not significantly different. Also, patients had a lower capacity to sustain exercise performance after the GET through peak VO2, which was related to symptoms of leg pain and dyspnea. Therefore, the GET/VO2 peak ratio was higher in MM patients compared to controls.

The ΔVO2/ΔWR relationship could be described as a bi-linear function in all subjects, with the intersection point between S1 and S2 corresponding to the GET. Patients with MM presented lower S1, S2 and ST slopes than controls (P < 0.05; Table 2). However, the between-group differences were more prominent in the S2 slope compared to S1 and ST (mean % reduction in MM patients compared to controls = 33.9, 17.8, and 25.2%, respectively). Therefore, the ratio between the S2 and S1 slopes was significantly lower in patients than controls (0.87 ± 0.15 vs 1.08 ± 0.18, P < 0.01). In addition, on-exercise VO2 kinetics (MRT), considering either S1 or ST, was slower in patients than controls (P < 0.05; Table 2).

ΔVO2/ΔWR and functional impairment

As shown in Figure 2, the overall ΔVO2/ΔWR response (i.e., ST) was significantly related to peak VO2 in MM patients, but not in controls. In fact, all patients with ΔVO2/ΔWR below 8 mL min⁻¹ W⁻¹ had severely reduced peak VO2 (<60% predicted) (28). Patients with lower ΔVO2/ΔWR presented reduced GET (r = 0.73) but higher WR-corrected lactate and MRT-VO2 values (r = 0.69 and r = 0.76, respectively; P < 0.01). Moreover, ΔVO2/ΔWR was positively related to peripheral muscle endurance in MM patients (r = 0.78; P < 0.01) but not in controls (P > 0.05).

Relationship between ΔVO2/ΔWR and cardiopulmonary responses in MM

Patients with MM had increased cardiorespiratory responses to the metabolic demands during progressive exercise compared to healthy controls (Table 2; P < 0.01) as previously described (16-20). There were significant inverse relationships between ΔVO2/ΔWR (S1, S2 and ST) and submaximal cardiovascular (ΔHR/ΔVO2) and ventilatory (ΔVE/ΔVCO2) responses in patients with MM (P < 0.05). The correlation coefficients, however, were higher for S2 than S1 and ST (S2 = -0.75 and -0.69; S1 = -0.51 and -0.55; ST = 0.60 and -0.62, for ΔHR/ΔVO2 and ΔVE/ΔVCO2, respectively).

Table 2. Cardiopulmonary exercise variables of patients with mitochondrial myopathy and healthy controls.

<table>
<thead>
<tr>
<th></th>
<th>Mitochondrial myopathy (N = 14)</th>
<th>Controls (N = 10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>POWER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak exercise WR (W)</td>
<td>91 ± 31*</td>
<td>178 ± 38</td>
</tr>
<tr>
<td>METABOLIC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VO2 (mL min⁻¹ kg⁻¹)</td>
<td>22.3 ± 7.2*</td>
<td>30.7 ± 6.0</td>
</tr>
<tr>
<td>VO2 (% pred)</td>
<td>64 ± 21*</td>
<td>95 ± 15</td>
</tr>
<tr>
<td>RER</td>
<td>1.19 ± 0.15</td>
<td>1.20 ± 0.08</td>
</tr>
<tr>
<td>Lactate (mM)</td>
<td>7.2 ± 2.1</td>
<td>7.4 ± 1.4</td>
</tr>
<tr>
<td>Lactate/WR (mM/W)</td>
<td>0.07 (0.03-0.17)*</td>
<td>0.04 (0.03-0.06)</td>
</tr>
<tr>
<td>At the gas exchange threshold (GET)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VO2 (mL/min)</td>
<td>705 ± 274*</td>
<td>1006 ± 267</td>
</tr>
<tr>
<td>VO2 (mL min⁻¹ kg⁻¹)</td>
<td>13.11 ± 3.40</td>
<td>14.26 ± 3.55</td>
</tr>
<tr>
<td>VO2 (% VO2 peak)</td>
<td>60.8 ± 9.3*</td>
<td>46.7 ± 7.9</td>
</tr>
<tr>
<td>Submaximal relationship ΔVO2/ΔWR (mL min⁻¹ W⁻¹)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td>7.8 ± 1.4*</td>
<td>9.5 ± 0.8</td>
</tr>
<tr>
<td>S2</td>
<td>6.8 ± 1.5*</td>
<td>10.3 ± 0.6</td>
</tr>
<tr>
<td>ST</td>
<td>7.4 ± 1.7*</td>
<td>9.9 ± 0.7</td>
</tr>
<tr>
<td>VO2 KINETICS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MRT1 (s)</td>
<td>56.2 ± 17.4*</td>
<td>47.1 ± 18.0</td>
</tr>
<tr>
<td>MRT2 (s)</td>
<td>58.7 ± 19.2*</td>
<td>49.3 ± 17.4</td>
</tr>
<tr>
<td>VENTILATORY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak exercise VE (L/min)</td>
<td>41.9 ± 17.7*</td>
<td>81.6 ± 20.9</td>
</tr>
<tr>
<td>Submaximal relationship ΔVE/ΔVCO2 (L/L)</td>
<td>36.5 ± 5.2*</td>
<td>27.3 ± 2.7</td>
</tr>
<tr>
<td>CARDIOVASCULAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak exercise HR (bpm)</td>
<td>157 ± 19*</td>
<td>178 ± 10</td>
</tr>
<tr>
<td>HR (% pred)</td>
<td>86.3 ± 8.1*</td>
<td>95.4 ± 4.3</td>
</tr>
<tr>
<td>VO2/HR (mL min⁻¹ beat⁻¹)</td>
<td>7.4 ± 3.1*</td>
<td>11.4 ± 3.3</td>
</tr>
<tr>
<td>Submaximal relationship ΔHR/ΔVO2 (beat L⁻¹ min⁻¹)</td>
<td>83.0 ± 26.2*</td>
<td>54.4 ± 14.8</td>
</tr>
</tbody>
</table>

Data are reported as means ± SD or median (range). WR = work rate; RER = respiratory exchange ratio; VO2 = oxygen uptake; MRT = mean response time; VE = minute ventilation; HR = heart rate; VCO2 = carbon dioxide output. *P < 0.05 (unpaired t-test or Mann-Whitney test).
Discussion

This study has provided novel evidence that a readily available index of “aerobic efficiency” during ramp-incremental cycle ergometer exercise ($\Delta V_O_2/\Delta W_R$) is typically reduced in patients with MM, particularly in the supra-GET S_2 component. The $\Delta V_O_2/\Delta W_R$ was associated with worsening maximal (peak V_O_2, lactate/W_R) and submaximal (V_O_2/GET) markers of aerobic impairment and reduced peripheral muscle performance. In addition, this index was inversely related to submaximal cardiopulmonary stress ($\Delta V_E/\Delta V CO_2$ and $\Delta H_R/\Delta V O_2$), suggesting that these systems adopted a hyperdynamic pattern of response to compensate for an impaired O_2 utilization. Our data, therefore, indicate that $\Delta V_O_2/\Delta W_R$ may constitute a useful submaximal, effort-independent exercise index for quantification of functional impairment in this patient population.

Aerobic impairment and exercise capacity in MM patients

For clinical interpretation of $\Delta V_O_2/\Delta W_R$ during rapid-incremental exercise (ramp), it is important to differentiate between this index of aerobic metabolism and the V_O_2-W_R relationship in response to constant W_R exercise (“economy of cycling”), which is largely independent of fitness or cardiocirculatory dysfunction (1,2). Therefore, $\Delta V_O_2/\Delta W_R$ does not directly reflect the efficiency of muscle contraction, but rather the relative increase in aerobic metabolism as power output is increased. In this context, a reduced, but linear, $\Delta V_O_2/\Delta W_R$ is thought to represent decreased O_2 utilization (1,2). Assuming that patients’ ability to increase cardiac output was not impaired (see Study limitations), a lower $C_{a-v}O_2$ (i.e., reduced O_2 extraction) is the most likely explanation for a reduced $\Delta V_O_2/\Delta W_R$ as demonstrated by Taivassalo et al. (19) and, more recently, by Grassi et al. (32) using near-infrared spectroscopy. Considering that $\Delta V_O_2/\Delta W_R$ was significantly related to several indicators of aerobic metabolism, this relationship seems to be useful to indicate patients in whom O_2 extraction is particularly impaired.

In the present study, we found a strong linear relationship between $\Delta V_O_2/\Delta W_R$ and peak V_O_2 in MM patients, but not in controls (Figure 2). These results are consistent with the notion that the decrease in $\Delta V_O_2/\Delta W_R$ in disease conditions associated with impaired O_2 delivery or utilization may be severe enough to reduce peak V_O_2. This has been previously demonstrated by decreasing arterial O_2 content in healthy subjects (33) and in chronic cardiovascular disease (1,6,10).

Determinants of the $\Delta V_O_2/\Delta W_R$ relationship in MM patients

Some previous data have demonstrated that a $\Delta V_O_2/\Delta W_R$ relationship below the GET (S_1) satisfactorily represents the equivalent steady-state V_O_2 response (1,2,5,29), even in conditions associated with reduced $\Delta V_O_2/\Delta W_R$ (11). For supra-GET exercise, however, the V_O_2 response provides an imprecise estimate of the total rate of ATP regeneration, since the increased contribution of the anaerobic metabolism would contribute significantly to the overall muscle energetics. Paradoxically, the observed V_O_2 response is characteristically higher than expected from the sub-GET V_O_2-W_R relationship due to the development of an “excessive” V_O_2 response (34). Although the determinants of the so-called “slow component” of the V_O_2 response remain elusive, much of the extra-V_O_2 seems to derive from the exercising muscles (~80%), probably due to progressive recruitment of less efficient type II fibers (4). In fact, the greater increase in S_2 relative to S_1 has been found in subjects with a high percentage of type II fibers and at high pedal rates (5).

In the present study, we confirm previous observations that S_2 is steeper than S_1 in normal subjects, probably reflecting the contribution of the V_O_2 slow component (2,3,5,29). This pattern, however, contrasted with that found in patients with MM who showed a consistently lower S_2/S_1 ratio at the same pedaling rate compared to normal subjects. These results were not due to a faster rate of work rate incrementation in patients as the ramp duration did not differ between patients and controls. Although muscle fiber
typing was not performed in the present study, a selective reduction in the type II fiber population could be related to this phenomenon and/or MM patients may have an impaired ability to recruit these fibers (35,36). Alternatively, the deleterious heteroplasmic mtDNA alterations may have equally affected type I and type II fibers (12). In addition, it should be recognized that some of the mechanisms involved in the VO2 slow component might be linked to lactate production and/or metabolism. Considering, therefore, that the anaerobic contribution (and lactate release) to muscle metabolism is increased in these patients since early exercise (16,19), the increase in lactate (and VO2) above the GET, compared to sub-GET, exercise may have been less abrupt in patients than controls. In this context, it is interesting to note that similar findings (lower S2/S1) were reported in studies involving patients with chronic heart failure probably due to impaired O2 delivery (33,37). We also cannot rule out the possibility that the supra-GET exercise was associated with lower rates of ATP regeneration and further decreases in O2 utilization. Nevertheless, peak VO2 was particularly related to S2, suggesting that the end-exercise VO2 response is strongly influenced by the magnitude of the supra-GET VO2 response in patients with reduced ΔVO2/ΔWR values.

Ventilatory and cardiovascular responses to incremental exercise in MM

The precise etiology of the hyperventilatory and hypercirculatory responses to dynamic exercise in MM patients is unknown. Some investigators have postulated a common mechanism for these adjustments with a descending parallel activation of the respiratory and cardiovascular centers in response to afferent stimulation from metabolically sensitive chemoreceptors in peripheral skeletal muscles (19,38). Our data showing a strong relationship between ΔVO2/ΔWR and cardiopulmonary stress suggest that these abnormalities can be mechanistically linked. Therefore, heightened cardiopulmonary responses could be expected in those patients in whom the intramuscular disturbances were more pronounced and the afferent stimuli were higher, i.e., those with lower ΔVO2/ΔWR. This hypothesis, however, should be more properly investigated in studies evaluating the responses to interventions aimed to improved O2 utilization in these patients. Nevertheless, the increased ventilatory and cardiovascular costs combined with lower ΔVO2/ΔWR (S2) seem to indicate that they are not relevant to explain the extra-VO2 related to heavy exercise in MM patients.

Study limitations

In order to accurately measure the power output, the patients were evaluated during incremental cycle ergometry. Therefore, our results may not be applicable to body-bearing activities, such as walking or running. In addition, although patients were screened at rest for significant cardiovascular disease, stroke volume was not measured during exertion. Consequently, we cannot be sure that our patients were “hypercirculatory” as low stroke volume may have limited any increase in cardiac output. Moreover, C(a-v)O2 was not measured and impaired O2 extraction could only be inferred from noninvasive data. Finally, genetic studies were not performed and we were unable to correlate the physiological abnormalities with mtDNA mutation load on skeletal muscle or the qualitative distribution of type fibers (39).

In conclusion, our results indicate that a readily available, effort-independent submaximal index of aerobic dysfunction during ramp-incremental exercise (ΔVO2/ΔWR) is severely reduced in patients with MM, being related to increased functional impairment and higher HR and ventilatory responses related to metabolism. This relationship, therefore, should be routinely reported in cardiopulmonary exercise testing evaluations and clinically valued in this patient population.

Acknowledgments

Research supported by FAPESP. A.C. Gimenes is a Master’s graduate student supported by a CAPES fellowship program. L.E. Nery and J.A. Neder are Established Investigators (level II) of CNPq.

References

